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RESUMO EXPANDIDO 
 

Introdução: O comprimento muscular é um dos principais determinantes da capacidade 

de geração de força das fibras musculares1. O torque varia expressivamente com a 

manipulação do ângulo articular. Alguns estudos relatam que o ângulo articular influencia 

o torque evocado e a eficiência da corrente (torque/amplitude da corrente) durante a 

estimulação elétrica neuromuscular (EENM)2-4. Tipicamente, o torque extensor do joelho 

é maior em ~60º de flexão em uma posição sentada. A arquitetura muscular (i.e., espessura, 

ângulo de penação [θp] e comprimento do fascículo [Cf]) e o deslocamento do complexo 

tendão-aponeurose (DCTA) têm sido estudados para explicar mecanismos da geração de 

torque durante a manipulação do comprimento muscular5-7. No entanto, até o momento, 

não foram estudados os efeitos dos ângulos do quadril e do joelho durante a EENM no 

comportamento da unidade miotendínea dos constituintes do quadríceps femoral (QF): o 

biarticular reto femoral (RF) e os monoarticulares vasto lateral (VL), vasto medial (VM) e 

vasto intermédio (VI)2,8. 

Até onde sabemos, existe apenas um estudo crônico que trata da EENM em 

diferentes ângulos articulares, o qual mostrou melhores resultados para a EENM realizada 

em um maior comprimento muscular9. No entanto, uma posição estendida do joelho foi 

previamente recomendada, apesar do pequeno tamanho de efeito relatado 10. Vários estudos 

têm aplicado a EENM do QF escolhendo aleatoriamente o ângulo articular, como sentado 

ou deitado, com os joelhos estendidos ou flexionados em diferentes ângulos, ou mesmo 

sem descrição completa 11,12. Os clínicos devem estar cientes da configuração articular a 

fim de otimizar as respostas musculares aos programas de exercícios isométricos. 

 

Objetivos: O objetivo principal deste estudo foi investigar o efeito dos ângulos do joelho 

(60º ou 20º) e do quadril (0º ou 85º) no torque evocado e na eficiência da corrente da 

EENM. Nós também avaliamos a arquitetura muscular (θp e Cf) em repouso e durante 

contração e o DCTA de cada componente do QF para investigar a contribuição deles. 

 

Hipóteses: Nossa hipótese inicial foi que durante a EENM seria obtido maior torque 

extensor com o joelho a 60º na posição sentada, porém com amplitude de corrente 

proporcionalmente menor, portanto, melhor eficiência da corrente. Também levantamos a 

hipótese de que o θp seria menor e o Cf seria maior quando o joelho estivesse em 60º para 

todos os componentes do quadríceps (RF, VL, VM e VI), mas para o RF, o quadril em 0º 

diminuiria o θp e aumentaria o Cf ainda mais. Além disso, esperávamos que o TACD fosse 

mais pronunciado em posições com maior torque. 

 

Métodos: Vinte homens hígidos com idade 24,0 ± 4,6 participaram de cinto sessões 

separadas por sete dias entre cada uma delas: uma sessão de familiarização e quatro sessões 

experimentais para testar quatro combinações diferentes de ângulos do quadril e do joelho 

durante EENM: quadril a 85º (sentado) e joelho a 60º (SJ60); quadril a 85º e joelho a 20º 

(SJ20); quadril a 0º (deitado) e joelho a 60º (DJ60); e quadril a 0º e joelho a 20º (DJ20). 

Oito contrações evocadas foram necessárias para realizar a ultrassonografia dos quatro 

componentes do QF (duas contrações para cada um). Os participantes foram questionados 

sobre condições de saúde e foi realizada a caracterização demográfica e antropométrica. 

Na familiarização foi verificado se os participantes toleravam amplitude de corrente 

suficiente para gerar um torque evocado ≥ 30% da contração voluntária máxima (CVM). 

 

Os valores de CVM, torque evocado, eficiência da corrente, amplitude da 

corrente, espessura muscular, θp, Cf, e DCTP foram reportados por meio de média ± desvio 
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padrão. Para o θp e o Cf, as analyses foram realizadas com os valores de repouso e em 

contração, bem como com a mudança relativa (%). A ANOVA unidirecional de medidas 

repetidas com fator “posicionamento” (DJ60, SJ60, DJ20, SJ20) foi aplicada para verificar 

diferenças entre posições para a CVM, o torque evocado, a eficiência da corrente, a 

amplitude da corrente e o DCTA. A ANOVA bidirecional (“posicionamento” [4 níveis: 

DJ60, SJ60, DJ20, and SJ20] versus “intensidade” [2 níveis: repouso and contração 

evocada]) com medidas repetidas no fator posicionamento foi aplicada para verificar 

diferença entre posições para o θp e o Cf. Quando uma diferença significativa foi detectada, 

o teste post-hoc de Tukey foi aplicado. O limiar de significância foi estabelecido em P < 

0,05. Todas as análises foram realizadas usando o STATISTICA 23.0 (STATSOFT Inc., 

Tulsa, Oklahoma, EUA) e o software GRAPHPAD PRISM 8.3.0 (San Diego, CA, EUA) 

foi utilizado para o design gráfico. 

 

Resultados: O torque evocado e a eficiência da corrente foram maiores para o DJ60 e o 

SJ60 em comparação com o DJ20 e o SJ20 (p <0,001). O QF (média de todos os músculos), 

o VL e o VM apresentaram menor θp e maior Cf em DJ60 e SJ60, enquanto o reto femoral 

demonstrou influência do ângulo do quadril, uma vez que em DJ60 houve menor θp e maior 

Cf do que em todas as outras posições (p < 0,001 – 0,05). O vasto intermédio se comportou 

semelhante aos demais vastos (p < 0,001), exceto pela falta de diferença no θp entre SK60 

em comparação com DJ20 e SJ20 (p = 0,25 e 0,30, respectivamente). A TACD foi maior 

para o SJ60 em comparação com o DJ60 (p <0,001), apesar do mesmo torque.  

 

Discussão: Os principais achados deste estudo foram: 1) o torque evocado extensor do 

joelho e a eficiência da corrente foram maiores em 60º de flexão do joelho comparado com 

em 20º, sem diferença de acordo com o ângulo do quadril; 2) O QF teve menor θp and 

greater Cf em 60º de flexão de joelho. 3) O DCTA foi menor em DJ60 comparado com 

SJ60 apesar do mesmo torque. Estes novos achados são importantes para ajudar 

fisioterapeutas e treinadores físicos a desenvolverem estratégias mais efetivas quando 

aplicarem EENM. Nossos resultados estão de acordo com relatos anteriores que 

encontraram maior torque evocado a 60º de flexão do joelho em comparação com posições 

mais estendidas3,4. Um ângulo articular escolhido com cautela permite atingir o torque alvo 

com menor amplitude de corrente e, com isso, com menos desconforto sensorial. 

Apenas dois estudos avaliaram a arquitetura de todos os constituintes do QF in 

vivo, mas eles não aplicaram ENM ou avaliaram diferentes ângulos articulares8,13. Nosso 

principal achado foi que o QF demonstrou um padrão em que as posições com o joelho a 

60º apresentavam θp menor e maior Cf quando comparadas às posições com o joelho a 20º. 

Assim, sugere-se que em DJ60 e o SJ60 o QF foi colocado em uma melhor configuração 

para geração de torque, ou seja, melhor aproveitamento da força muscular e comprimento 

ideal do sarcômero1,14. O QF apresentou um DCTA menor em DJ60 comparado com SJ60, 

apesar do mesmo torque evocado, indicando que o aumento da tensão passiva em DJ60 

limitou o alongamento tendíneo durante a contração6. O aumento da tensão do complexo 

tendão-aponeurose em condições de alongamento permite contrações mais fortes com 

menor esforço devido à melhor transmissão de força do músculo para o osso7. 

 

Conclusão: A EENM gera um torque maior a 60º de flexão do joelho, comparado a 20º, 

independentemente do ângulo do quadril. A arquitetura de cada constituinte do quadríceps 

demonstrou um comportamento único de acordo com o ângulo do quadril e do joelho, mas 

predominaram um menor θp e um maior Cf nas posições com maior torque (SJ60 e DJ60). 

Uma posição mais alongada enrijece o complexo tendão-aponeurose, como demonstrado 

por um DCTA menor em DJ60 em comparação com SJ60, o que provavelmente contribuiu 
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para uma transmissão otimizada da força e um torque ligeiramente mais alto para o DJ60. 

Clínicos devem preferencialmente usar NMES em DJ60 ou DJ60 para fins de 

fortalecimento. 

 

Palavras-chave: Estimulação elétrica neuromuscular; Relação ângulo-torque; Arquitetura 

muscular; Complexo tendão-aponeurose; Quadríceps. 
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ABSTRACT 

Neuromuscular electrical stimulation (NMES) is recommended to counteract muscle 

atrophy and for strengthening. However, the influence of hip and knee angles during 

quadriceps femoris (QF) NMES is poorly investigated. We aimed to investigate the effect 

of knee and hip angle on NMES-evoked torque and current efficiency. We secondarily 

assessed the QF architecture at rest and during contraction, and the tendon-aponeurosis 

complex displacement (TACD). Twenty men aged 24.0 ± 4.6 years received NMES in four 

positions: hip at 85º (seated) and knee at 60º (SK60); hip at 85º and knee at 20º (SK20); 

hip at 0º (lying) and knee at 60º (LK60); and hip at 0º and knee at 20º (LK20). NMES-

evoked torque and current efficiency (evoked torque/current amplitude) were recorded. 

Ultrasonography of the QF was performed to measure pennation angle (θp), fascicle length 

(Lf), and TACD. Evoked torque and current efficiency were greater for LK60 and SK60 

compared to LK20 and SK20 (p < 0.01). The QF (all muscles), vastus lateralis, and 

medialis showed lower θp and higher Lf at LK60 and SK60, while rectus femoris 

demonstrated influence of hip angle, since in LK60 there was lower θp and higher Lf than 

in all other positions (p < 0.05). The vastus intermedius was similar to the other vasti, 

except for a lack of difference in θp between SK60 compared to LK20 and SK20. TACD 

was greater for SK60 compared to LK60 (p < 0.001) despite the same torque. These 

findings suggest that clinicians should apply NMES preferably at 60º of knee flexion. 

Keywords: Neuromuscular Electrical Stimulation; Angle-torque relationship; Muscle 

architecture; Tendon-aponeurosis complex; Quadriceps. 
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INTRODUCTION 

Muscle length is a major determinant of force generation capacity of muscle 

fibers1,2. Maximal voluntary contraction (MVC) varies expressively with the manipulation 

of joint-angle due to changes in muscle length and moment arm 3-5. In addition, some 

studies have reported that joint angle has an effect on evoked torque induced by 

neuromuscular electrical stimulation (NMES) 6-9. Typically, knee extensor torque is greater 

at ~60º of flexion (0º being fully extended) in a seated position 5,8,10,11. 

Muscle architecture (i.e., muscle thickness, pennation angle [θp], and fascicle 

length [Lf]) and the tendon-aponeurosis complex displacement (TACD) have been studied 

to explain mechanisms of torque generation during muscle length manipulation 12-15. 

Muscle architecture is the arrangement of muscle fibers relative to the force axis, a strong 

determinant of muscle function 16,17. A steeper θp and shorter Lf are found at shortened 

compared to more elongated positions 12. Moreover, an increase in θp is expected with a 

concomitant reduction in Lf during isometric contraction 12,18,19. The TACD indicates the 

elongation from the deep aponeurosis to the distal free tendon in response to transmission 

of muscle force to bones 13. Muscle and tendon-aponeurosis complex behavior have been 

assessed during NMES 20,21. However, to date, the effects of hip and knee angles during 

NMES have not been studied on the muscle-tendon behavior of the constituents of the 

quadriceps femoris (QF): the biarticular rectus femoris (RF), and the monoarticular vastus 

lateralis (VL), medialis (VM), and intermedius (VI) 7,22. 

NMES is commonly applied to counteract the harmful effects of atrophy and for 

strengthening purposes 23,24. Although QF is the most frequently stimulated muscle 23, the 

influence of hip and knee angles on evoked torque and current efficiency (torque/current 

amplitude) during NMES is not well established. Scott et al. 8 compared three knee angles 

(30º, 60º, and 90º) and found higher absolute evoked torque at 60º, which suggests a similar 

pattern to that observed during MVC 5. Lastly, Maffiuleti et al. 6 and Bampouras et al. 7 
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showed greater evoked torque of knee extension when lying compared to a seated position 

while maintaining the knee at 90º. These studies only evaluated the knee or the hip 

separately and they did not assess the current efficiency, a parameter that should be 

optimized to attain higher torque with lower discomfort and could also be dependent on 

muscle length 25,26. 

JUSTIFICATIVE 

Notably, the only clinical trial available showed better results for NMES 

performed at longer muscle length 27. However, a knee extended position (shortened QF) 

was previously recommended in situations where patients are unable to tolerate NMES 

with flexed knees or if a dynamometer is unavailable, despite the reported small effect size 

for QF strengthening compared to previous protocols with flexed knee 28. Chronic studies 

have applied NMES with a random joint angle choice, such as seated or lying, with knees 

extended or flexed at different angles, or even with an incomplete description of lower limb 

position 29-31. This approach is questionable in view of the pivotal physiological principles 

of the force-length and angle-torque relationships 1. Physical therapist and athletic trainers 

should be aware of joint configuration in order to optimize muscular responses to 

isometric-based exercise programs.  

OBJECTIVES 

Therefore, the primary aim of this study was to investigate the effect of knee (60º 

or 20º) and hip (0º or 85º) angle on NMES-evoked torque and current efficiency. We 

secondarily assessed the muscle architecture (θp and Lf) at rest and during contraction, and 

the TACD of each QF constituent during NMES to investigate their contribution to torque 

production.  
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HYPOTHESIS 

Our primary hypothesis was that during NMES greater knee extensor torque 

would be obtained in the seated position with the knee at 60º of flexion with a 

proportionally lower current amplitue, and, thus, better current efficiency. We also 

hypothesized that at rest and during the plateau of the evoked contraction, θp would be 

lower and Lf would be greater when the knee is at 60º for all quadriceps components (RF, 

VL, VM, and VI), although for RF, the hip at 0º would decrease the θp and increase the Lf 

even more. Moreover, we expected that the TACD would be more pronounced in positions 

with greater torque for at least one of the QF constituents (RF, VL, VM, and VI). 

MATERIAL AND METHODS 

Participants 

Twenty men (mean ± SD age: 24.0 ± 4.6 years, body mass: 77.0 ± 9.3 kg, height: 

177.6 ± 6.3 cm) with no known neuromuscular disorders and not engaged in systematic 

lower limb strengthening or sport competitions in the previous 6 months volunteered to 

participate. Sample size (n = 20) was determined a priori using G* POWER (v 3.13; 

University of Trier, Germany) based on evoked torque found at three knee angles (30º, 60º, 

and 90º) by Scott et al. (2019). The level of significance was set at p = 0.05, a power (1- β) 

= 0.80, and an effect size = 0.75. Subjects were informed about the purposes, benefits, and 

risks before enrollment and all agreed to participate and signed the consent form. Approval 

was obtained (protocol number 94388718.8.0000.8093; Appendix III) from the Research 

Ethics Committee of the University of Brasília/Faculty of Ceilândia in accordance with the 

Helsinki Declaration of 1975. 

Experimental design 

Participants took part in five sessions at least 7 days apart, during the day. The first 

session was for familiarization. Participants were asked about health conditions and 
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demographic and anthropometric characterization was performed. Motor point localization 

of the VL and VM, and a pre-session preparation: 2 MVC and 2 evoked contractions in 

each position were carried out, in order to verify that participants tolerated enough current 

amplitude to generate an evoked torque ≥ 40% of their MVC. Each experimental session 

lasted ~3 hrs during which one of four different combinations of lower limb position was 

randomly tested during quadriceps NMES: hip at 85º (seated) and knee at 60º (SK60º); hip 

at 85º and knee at 20º (SK20º); hip at 0º (lying) and knee at 60º (LK60º); and hip at 0º and 

knee at 20º (LK20º). We instructed subjects not to ingest alcohol or stimulants (e.g., 

caffeine, chocolate, and dietary performance supplements), respectively, for 24 and 6 hours 

before each visit, and not to participate in strenuous activities in the prior 48 hours. The 

primary outcomes were the evoked torque (absolute and normalized by MVC) and the 

current efficiency (torque/current amplitude). Secondary outcomes were the muscle 

architecture at rest and during NMES (θp and Lf) and the TACD of the four QF constituents 

(Fig. 1).  
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Figure 1 – Experimental design: Participants took part in five sessions at least 7 days 

apart; a familiarization and four experimental sessions, to test four different combinations 

of hip and knee joint angles randomly during NMES-evoked contraction of knee extension. 

8 evoked contractions were necessary to perform ultrasonography of the four quadriceps 

constituents (2 contractions for each one). The primary outcomes were the evoked torque 

(absolute and normalized by maximal voluntary contraction) and the current efficiency 

(torque/current amplitude). Secondary outcomes were the muscle architecture at rest and 

during NMES (pennation angle and fascicle length) and the tendon-aponeurosis complex 

displacement of the four quadriceps constituents. Legend: NMES: neuromuscular electrical 

stimulation; LK60: lying with knee at 60º; SK60: seated with knee at 60; LK20: lying with 

knee at 20º; SK20: seated with knee at 20º. 
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Torque 

The positions (SK60, SK20, LK60, and LK20) were tested while participants were 

seated on the chair of a dynamometer (SYSTEM 4; BIODEX MEDICAL SYSTEMS, 

Shirley, New York) to measure extensor torque of the right knee. The equipment axis was 

visually aligned with the knee flexion-extension axis, i.e., the lateral epicondyle of the 

femur. The knee and hip angles were adjusted with a goniometer and the lever arm of the 

dynamometer transducer was firmly attached 2-3 cm above the lateral malleolus with a 

strap. Subjects were firmly stabilized to the chair with belts across the chest and pelvic 

girdle to minimize body movements. Resting torque was recorded in each position and 

used for subsequent gravity correction due to the weight of the limb or other force, such as 

the passive tension of the structures that cross the knee 7. A warm up of 6 submaximal 

isometric contractions of 5 s and a rest interval of 10 s was performed at the beginning of 

each session at percentages of the maximum perceived effort (50% [x3], 75% [x2], and 

90% [x1]). Prior to the recording of the evoked torque during NMES, participants 

performed 2 MVCs of the right knee extensors separated by a 2min rest. During each MVC, 

participants were encouraged verbally to perform maximally and received visual feedback 

of the torque produced. 

NMES 

A neuromuscular electrical stimulator (NEURODYN 2.0, IBRAMED, SP, Brazil) 

was connected to two isolated cables and a pair of self-adhesive electrodes of 25cm2 applied 

over the motor points of the VL and VM as described by Botter et al. 32. NMES was applied 

using a pulsed current with a frequency = 100 Hz, phase duration = 400 μs, rise time = 3 s, 

on time = 4 s, decay time = 3 s, and off time = 1 min. Current amplitude was rapidly 

increased to reach the maximum tolerable amplitude achieved in the familiarization. Eight 

contractions were performed to allow all ultrasonographic recordings described in the 
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section below. Subjects were instructed to fully relax during the NMES to enable 

measurement only of evoked torque. The mean evoked torque of the first three evoked 

contractions was recorded and presented as absolute (N.m) and relative (a percentage of 

MVC) values. The mean current amplitude (mA) was used for calculation of current 

efficiency, as the ratio between absolute evoked torque and current amplitude 25. 

Muscle architecture 

The θp and Lf were obtained using an ultrasound device (M-TURBO®, SONOSITE, 

Bothwell, WA, USA) in B mode with a linear transducer of 7.5 MHz and width of 40 mm. 

Visualization depth was set at 6 cm. A custom-made device held the transducer, preventing 

it from moving on the thigh surface. For each QF constituent, two video recordings were 

obtained and the mean of the calculations was considered. The transducer was positioned 

in the longitudinal plane of the muscle in parallel with the direction of the fascicles. Proper 

alignment was achieved when multiple fascicles were traced without interruption, for this, 

the transducer was allowed to tilt in relation to the skin to adapt to the three-dimensional 

configuration of the fascicles. The lateral compartments of the bipennated RF and VL,VM, 

and VI were evaluated, respectively, at the percentages 50%, 60%, 75%, and 80% of the 

thigh length, from proximal to distal, considering the distance between the medial aspect 

of the anterior superior iliac spine and the superior border of the patella, as adapted from 

Blazevich et al. 22. For the VI, although it could be seen on the same window as the RF or 

VL during contraction, VI visualization could be partially lost, in which case it was 

recorded more distally. Confirmation of each muscle location, when necessary, was 

performed with the probe in transverse plane, allowing visualization of the transition from 

one muscle to another. The RF and VI were visualized on the anterior aspect of the thigh, 

while the VL and VM were visualized, respectively, on the lateral and medial aspects. 

Video files recorded during evoked contractions were stored on the device itself and 
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transferred to a computer for processing in public domain software (ImageJ software v. 

1.46; National Institutes of Health, Bethesda, Maryland). Muscle thickness was considered 

as the distance between the superficial and deep aponeurosis of each muscle. The θp was 

calculated considering the angle between the deep aponeurosis and the fascicles. The Lf  

was directly measured wherever possible, or in cases where the fascicles extended beyond 

the visible field of view, linear extrapolation was applied, as well as an equation with a 

reported error of 2-7% 33. Figure 2 shows an example of measurement at rest and during 

evoked contraction of muscle architecture and the TACD. 
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Figure 2 - Muscle ultrasonography: An ultrasound analysis of the vastus medialis at rest 

(A) and during NMES-evoked contraction (B). (a) deep aponeurosis; (b) superficial 

aponeurosis; (c) muscle thickness; (d) fascicle with extrapolation or not; (e) pennation 

angle; (f) distance between end of fascicle visualization and superficial aponeurosis; (g) 

lines indicating the cross point between fascicle and deep aponeurosis; (h) tendon-

aponeurosis complex displacement. Legend:  NMES: neuromuscular electrical stimulation. 
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Tendon-aponeurosis complex displacement 

The longitudinal TACD was assessed, in each QF constituent, using the same files 

obtained for muscle architecture. A vertical line was traced over the cross point between 

the fascicle and the deep aponeurosis at rest and the displacement in centimeters was 

measured considering the final position of the cross point during the evoked torque. A 

hypoechoic mark was used to correct any unavoided movement of the transducer. 

Moreover, to correct overestimation of the TACD due to any knee joint angular rotation, 

we performed ultrasonographic recordings of all QF constituents during passive motion of 

the knee from 60º to 0º in both seated and lying positions, and placed a digital goniometer 

(GN360; Miotec®, Porto Alegre/RS, Brazil) (GN360) on the lateral aspect of the knee 

during NMES. Only the values corrected for angular rotation were reported 13. A single 

examiner conducted all measurements. 

Statistical Analysis 

Values of MVC, evoked torque, current efficiency, current amplitude, muscle 

thickness, θp, Lf, and TACD are reported as mean ± standard deviation (SD). For θp and Lf, 

analyses were performed with the rest and contracting (during NMES) values, as well as 

their relative (%) change (rest to contraction). Although individual QF constituents have 

previously been referred to as “quadriceps” as a form of generalization (Aagard et al., 

2001), for better understanding, in the present study, QF constituents are referred to as RF, 

VL, VM, and VI, and the mean of their values is referred to as QF. Repeated measures one-

way ANOVA with a within-subject of “positioning” (LK60, SK60, LK20, and SK20) was 

applied to verify differences between positions for MVC, evoked torque, current efficiency, 

current amplitude, and TACD. A two-way ANOVA (“positioning” [4 levels: LK60, SK60, 

LK20, and SK20] by “intensity” [2 levels: rest and evoked contraction]) with repeated 

measures on the positioning factor was applied to verify differences between positions for 
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θp and Lf. When a significant difference was detected, a Tukey post-hoc test was applied to 

identify the differences. Effect sizes and statistical power were calculated. Effect size was 

determined using partial eta squared (ηρ
2): small (ηρ

2 = 0.01), medium (ηρ
2 = 0.06), and 

large (ηρ
2 = 0.14) effects. Intra-class correlation (ICC) of evoked torque (all 8 contractions 

performed in each position), muscle architecture, and TACD (2 repeated analyses of 40 

random assessment in any position, 10 for each QF constituent), was classified as: 

insufficient < 0.8, moderate = 0.8 – 0.9, and high > 0.9. The significance threshold was set 

at P < 0.05 for all procedures. All analyses were performed using STATISTICA 23.0 

(STATSOFT Inc., Tulsa, Oklahoma, USA) and the software GRAPHPAD PRISM 8.3.0 

(San Diego, CA, USA) was used for graphics design. 

RESULTS 

MVC, Evoked torque, current efficiency, and current amplitude  

Table 1 shows the mean ± SD as well as statistical significances on post-hoc 

analysis for MVC, absolute and normalized evoked torque, current efficiency, and current 

amplitude. A significant main effect was found for MVC (F3, 57 = 102.97, p < 0.001, ηρ
2: 

0.84, power: 1.0), absolute evoked torque (F3, 57 = 30.42, p < 0.001, ηρ
2: 0.61, power: 1.0), 

and current efficiency (F3, 57 = 18.15, p < 0.001, ηρ
2: 0.48, power: 0.99). In the post-hoc 

analysis, LK60 and SK60 showed greater MVC (p < 0.001), absolute evoked torque (p < 

0.001), and current efficiency (p < 0.01) than LK20 and SK20, with no differences between 

positions with the same knee angle, respectively: SK60 vs. LK60: p = 0.71, 0.99, and 0.062; 

SK20 vs. LK20: p = 0.99, 0.98, and 0.55. For normalized evoked torque, there was no main 

effect (F3, 57 = 1.52, p = 0.21, ηρ
2: 0.07, power: 0.38). For current amplitude, a significant 

main effect was found (F3, 57 = 12.74, p < 0.001, ηρ
2: 0.40, power: 0.99). A lower current 

amplitude was found at LK20 compared to SK60 (p < 0.001), SK20 (p < 0.05), and LK60 

(p < 0.001). LK60 did not differ from SK60 and SK20 (P = 0.45), but SK60 was greater 
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than SK20 (P <0.05). ICC was high for evoked torque at SK60 (0.92), SK20 (0.97) and 

LK20 (0.97), and moderate (0.89) at LK60. 
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Table 1. Maximal voluntary contraction, absolute evoked torque,  normalized evoked torque, current efficiency, and 

intensity at different hip and knee angles 

  LK60   SK60   LK20   SK20  

MVC (N.m) 216.45 ± 43.10 206.53 ± 47.70 96.96 ± 17.47a,b 95.63 ± 24.22a,b 

Absolute evoked torque (N.m) 172,53 ± 62,50 155,58 ± 59,49 71,38 ± 23,25a,b 67.01 ± 26.0a,b 

Normalized evoked torque (%) 80.81 ± 25.40 74.69 ± 22.73 72.53 ± 17.38 69.47 ± 19.07 

Current efficiency (N.m/mA) 2.16 ± 0.65 1.81 ± 0.64 1.15 ± 0.41a,b 0.92 ± 0.33a,b 

Intensity (mA) 81.46 ± 22.00 87.25 ± 25.21 64.16 ± 17.49a,b 75.65 ± 28.35a,c 

Values are reported as mean ±SD. Legend: LK60º: lying with knee at 60º; SK60º: seated with knee at 60º; LK20º: 

lying with knee at 20º; SK20º: seated with knee at 20º; MVC: Maximal voluntary contraction. aP< 0.05 vs. LK60; 
bP< 0.05 vs. SK60; cP< 0.05 vs. LK20 
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Table 2. Muscle thickness, fascicle length, and pennation angle of rectus femoris, vastus lateralis, vastus medialis, and vastus intermedius at rest and during neuromuscular 

electrical stimulation in four lower limb positions 

  LK60   SK60   LK20   SK20  

 Rest NMES Rest NMES Rest NMES Rest NMES 

Rectus femoris 

MT 2.64 ± 0.39 3.0 ± 0.49 2.46 ± 0.36 2.91 ± 0.48 2.47 ± 0.41 3.19 ± 0.63 2.46 ± 0.42 3.10± 0.61 

 (14.14 ± 3.03%) (3.38 ± 3.10%) (31.41 ± 6.96%) (26.32 ± 3.74%) 

θp 11.21 ± 2.91 14.0 ± 4.15 13.20 ± 2.98 18.58 ± 4.92 13.64 ± 3.22 18.64 ± 4.16 13.78± 3.32 21.23± 7.62 

 (27.23 ± 30.79) (43.36 ± 33.51%) (39.87 ± 27.13%) (55.34 ± 45.51%) 

Lf 15.09 ± 4.47 13.67 ± 4.26 11.79 ± 3.09 9.77 ± 2.27 11.87 ± 3.15 10.54 ± 2.86 10.75 ± 3.60 9.44 ± 3.51 

 ( -5.71 ± 27.48) (-14.29 ± 20.79%) (-8.52 ± 27.28%) (-9.26 ± 29.01%) 

Vastus lateralis 

MT 2.42 ± 0.26 2.66± 0.48 2.50 ± 0.29 2.73 ± 0.37 2.22 ± 0.32 2.7 ± 0.47 2.31 ± 0.26 2.67± 0.31 

 (9.82 ± 3.46%) (9.07 ± 2.44%) (21.53 ± 2.94%) (16.63 ± 3.92%) 

θp 10.99 ± 1.98 15.01± 3.54 11.81 ± 2.05 15.15 ± 4.39 13.22 ± 2.22 18.43 ± 5.14 13.83 ± 2.73 20.37 ± 5.03 

 (39.85 ± 38.08) (28.56 ± 29.61%) (40.90 ± 42.44%) (51.49 ± 40.70%) 

Lf 12.89 ± 2.02 10.46± 2.46 13.08 ± 2.84 11.18± 3.75 10.79 ± 2.17 9.29 ± 3.74 10.17 ± 1.67 8.09± 1.64 

 (-17.43 ± 22.11) (-13.08 ± 30.46%) (-14.10 ± 23.92%) (-19.25 ± 17.58%) 

Vastus medialis 

MT 2.28 ± 0.35 2.91± 0.58 2.49 ± 0.43 2.84± 0.55 2.37 ± 0.39 2.93± 0.45 2.49 ± 0.38 2.87 ± 0.38 

 (27.20 ± 2.17%) (14.39 ± 3.25%) (25.22 ± 3.99%) (16.66 ± 3.16%) 

θp 11.14 ± 2.13 16.87± 4.50 11.70 ± 3.27 18.32± 4.98 16.41 ± 3.47 21.30± 2.80  15.05 ± 5.18 22.49 ± 5.64 

 (56.55  ± 50.40) (59.68 ± 32.92) (32.79 ± 19.52%) (58.41 ± 37.30%) 

Lf 11.67 ± 2.41 10.11 ± 2.59 12.78 ± 2.29 9.33± 2.25 9.32 ± 1.97 7.70± 1.42 10.35 ± 2.97 7.53± 1.86 

 (-11.61 ± 23.29) (-25.41 ± 19.92%) (-14.41 ± 19.46%) (-23.28 ± 25.33%) 

Vastus intermedius 

MT 2.32 ± 0.32 2.36± 0.28 2.25 ± 0.34 2.46± 0.33 2.09 ± 0.39 2.26± 0.38 1.84 ± 0.34 2.37± 0.26 

 (2.57 ± 2.17%) (11.84 ± 5.78%) (9.13 ± 3.38%) (31.86 ± 5.04%) 

θp 11.53 ± 1.91 17.69± 3.25 13.73 ± 3.36 19.22± 5.45 14.64 ± 3.01 21.03± 4.23 14.10 ± 3.57 21.75± 3.51 

 (54.94 ± 23.18) (42.89 ± 36.22%) (46.59 ± 27.73%) (59.00 ± 27.64%) 

Lf 11.18 ± 1.2 8.22± 1.45 10.69 ± 1.67 8.30± 1.73 8.73 ± 1.26 6.68 ± 1.44 8.99 ± 1.50 7.04± 1.17 

 (-26.48 ± 10.28) (-21.18 ± 17.81%) (-22.61 ± 16.21%) (-20.23 ± 15.61%) 

Values are expressed as mean ± SD. Legend: SK20º: seated with knee at 20º; SJ60º: seated with knee at 60º; LK20º: lying with knee at 20º; LK60º: lying with knee at 60º; MT: 

muscle thickness; θp: pennation angle;  Lf : fascicle length. 
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Muscle architecture 

Table 2 shows the mean ± SD for muscle thickness, θp, and Lf of the RF, VL, VM, 

and VI at rest and during NMES, as well as the percentage change, in the four lower limb 

positions. Figure 3 shows the mean ± SD and statistical significances on post-hoc analysis 

of θp and Lf at rest and during evoked contraction, and the main effect of position, for the 

RF, VL, VM, VI, and QF in the four lower limb position. ICC was moderate for muscle 

thickness (0.87), θp (0.85), and Lf (0.85). 

Rectus femoris 

There was interaction between positioning and intensity for θp (F3, 57 = 3.64, p = 

0.017, ηρ
2: 0.16, power: 0.77; (Fig. 3A). The post-hoc analysis showed significant 

differences from rest to evoked contraction in each position (p < 0.001), except LK60 (p = 

0.12). Furthermore, there was no difference between positions at rest (p = 0.19-1.0), but 

during contraction LK60 had lower θp compared to SK60, LK20, and SK20 (p < 0.001). 

There was no interaction of factors for Lf (F3, 57 = 0.18, p = 0.90, ηρ
2: 0.009, power: 0.08; 

Fig. 3B), but position effect was significant (F3, 57 = 9.64, p < 0.001, ηρ
2: 0.33, power: 0.99), 

where the post-hoc analysis showed greater Lf (p < 0.001-0.002) for LK60 compared to all 

positions. 

Vastus lateralis 

There were no significant interactions for θp (F3, 57 = 2.22, p = 0.095, ηρ
2: 0.10, 

power: 0.53; Fig. 3C) or Lf (F3, 57 = 0.33, p = 0.79, ηρ
2: 0.017, power: 0.11; Fig. 3D). 

Position factor was significant for both θp (F3, 57 = 14.23, p < 0.001, ηρ
2: 0.42, power: 0.99) 

and Lf (F3, 57 = 11.79, p < 0.001, ηρ
2: 0.38, power: 0.99). The post-hoc analysis showed 

lower θp (p < 0.001-0.011) and greater Lf (p < 0.001-0.031) for LK60 and SK60 compared 

to LK20 and SK20. 
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Vastus medialis 

There was a significant interaction for Lf of VM (F3, 57 = 2.867, p = 0.044, ηρ
2: 

0.13, power: 0.65; Fig. 3F).The post-hoc analysis showed that SK60 (p < 0.001) and SK20 

(p < 0.001) were different from rest to contraction, but not LK60 (p = 0.10) and LK20 (p 

= 0.083). Moreover, there were significant differences in LK60 and SK60 compared to 

LK20 and SK20 (p < 0.05), except LK60 vs SK20 at rest (p = 0.25) and SK60 vs LK20 

during NMES (p = 0.077). There was no interaction for θp (F3, 57 = 2.2, p = 0.097, ηρ
2: 0.10, 

power: 0.53; Fig. 3E), but there was a significant main effect of positioning (F3, 57 = 14.75, 

p < 0.001, ηρ
2: 0.43, power: 0.99). The post-hoc analysis showed lower θp (p < 0.001) for 

all pairwise comparisons of LK60 and SK60 compared to LK20 and SK20. 

Vastus intermedius 

There was no significant effect of interaction for θp (F3, 57 = 1.39, p < 0.25, ηρ
2: 0.06, 

power: 0.35; Fig. 3G) or Lf (F3, 57 = 1.707, p = 0.15, ηρ
2: 0.08, power: 0.42; Fig. 3H), but 

position factor was significant for θp (F8, 03= 8.03, p < 00.1, ηρ
2: 0.29, power: 0.98) and Lf 

(F3, 57 = 22.905, p < 0.001, ηρ
2: 0.54, power: 1.0). Lf was greater at LK60 and SK60 than at 

LK20 and SK20 (p < 0.001). However, for θp, LK60 was greater than LK20 (p < 0.001) 

and SK20 (p < 0.001), but SK60 was not (p = 0.25 and 0.30, respectively). 

Quadriceps femoris 

Considering the QF, there was an effect of interaction for θp (F3, 57 = 6.45, p < 

0.001, ηρ2: 0.25, power: 0.95; Fig. 3I). Although the post-hoc showed that increasing θp 

from rest to contraction was highly significant for all positions (p < 0.001), the delta 

changes for all positions where different: LK60 = 4.674 ± 2.33º, SK60 = 5.205 ± 2.24º, 

LK20 = 5.374 ± 1.66º, and SK20 = 7.269 ± 2.65º, where a complementary one-way 

ANOVA showed that it was higher at SK20 compared to LK60 (p< 0.001), SK60 (p = 

0.009), and LK20 (p = 0.02). Furthermore, a lower θp (p < 0.001-0.01) was found for LK60 
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and SK60 compared to LK20 and SK20, both at rest and during contraction, besides a lower 

θp during NMES of LK60 compared to SK60 (p = 0.001), and LK20 compared to SK20 (p 

= 0.014). There was no interaction for Lf (F3, 57 = 1.03, p = 0.38, ηρ2: 0.05, power: 0.26; 

Fig. 3J), but a positioning effect was found (F3, 57 = 24.57, p < 0.001, ηρ2: 0.56, power: 

1.0). The post-hoc analysis showed lower θp (p < 0.001) and greater Lf (p < 0.001) for LK60 

and SK60 compared to LK20 and SK20, besides a greater θp at SK60 than at LK60 (p = 

0.008). 

Summarizing the time effect (rest vs contraction), for all constituents, individually 

and grouped, as expected, θp increased (F3, 57 = 7.59–30.21, p < 0.001, ηρ
2: 0.28–0.61, 

power: 0.98–1.00) and Lf reduced (F3, 57 = 9.64–24.57, p < 0.001, ηρ
2: 0.33–0.56, power: 

0.99–1.0) from rest to evoked contraction. For the relative change in θp and Lf, for the 

majority of muscles, there was no main effect (F3, 57 = 0.34-2.22, p = 0.09-0.88, ηρ
2: 0.009-

0.10, power: 0.08-0.53), except for the θp of VM, but without significance in the post-hoc 

analysis (F3, 57 = 2.89, p = 0.043, ηρ
2: 0.13, power: 0.66). 
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Figure 3 – Muscle architecture changes of the quadriceps femoris according to hip 

and knee angles at rest and during NMES: Pennation angle (left y axis) and fascicle 

length (right y axis) of all  constituents of the quadriceps femoris individually and grouped 

at rest, during NMES (continuous lines), and main effect of position (dotted lines). Data 

are presented as mean ± SD. (A-B): Rectus femoris; (C-D): Vastus lateralis; (E-F): Vastus 

medialis; (G-H): Vastus intermedius; (I-J): Quadriceps muscle. Legend: NMES: 

neuromuscular electrical stimulation; LK60: lying with knee at 60º; SK60: seated with knee 

at 60º; LK20: lying with knee at 20º; SK20: seated with knee at 20º. Statistically significant 

differences: adifferent from LK60; bdifferent from SK60; cdifferent from LK20. Asterisks 

(*) indicate significant differences from rest when there is a position by time effect; p ≤ 

0.05. (n=20 per group). 
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Tendon-aponeurosis complex displacement 

Figure 4 shows the mean ± SD and statistical significances on post-hoc analysis of 

the TACD for RF, VL, VM, VI, and QF in the four lower limb position. A significant effect 

of positioning was found for the VL (F3, 57 = 11.53, p < 0.001, ηρ
2: 0.37, power: 0.99), VM 

(F3, 57 = 5.0, p = 0.003, ηρ
2: 0.20, power: 0.89), VI (F3, 57 = 2.86, p = 0.044, ηρ

2: 0.13, power: 

0.65), and QF (F3, 57 = 14.86, p < 0.001, ηρ
2: 0.15, power: 0.99), but not for the RF (F3, 57 = 

1.24, p = 0.30, ηρ
2: 0.06, power: 0.31). For the VL, SK60 had greater TACD than SK20 (p 

< 0.001), LK60 (p = 0.016), and LK20 (< 0.001). For the VM, SK60 had greater TACD 

than LK20 (p = 0.002). For the VI, SK60 had greater TACD than SK20 (p = 0.025). Finally, 

for the QF, SK60 had greater TACD than SK20 (p < 0.001), LK60 (p < 0.001), and LK20 

(< 0.001) (other comparisons: p = 0.089-0.93). The ICC for TACD was high (0.94). 
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Figure 4 - Tendon aponeurosis complex displacement of the quadriceps femoris 

according to hip and knee angles at rest and during NMES: Tendon-aponeurosis 

complex displacement of all quadriceps femoris constituents individually and grouped 

(bold line). Data are presented as mean ± SD and are significant at p < 0.05. Legend: 

NMES: neuromuscular electrical stimulation; SK60: seated with knee at 60º; SK20: seated 

with knee at 20º; LK20: lying with knee at 20º; LK60: lying with knee at 60º. Statistically 

significant differences: adifferent from LK60; bdifferent from SK60; cdifferent from LK20. 
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DISCUSSION 

The main findings of this study were: 1) knee extensor evoked torque and current 

efficiency were higher at 60º of knee flexion compared to 20º, with no difference according 

to the hip angle (0º or 85º); 2) QF had lower θp and greater Lf at 60º of knee flexion; 3) 

TACD was lower at LK60 compared to SK60 despite the same torque. These new findings 

may help physical therapists and athletic trainers to develop more effective strategies when 

applying NMES by positioning the knee at 60º when the goal is to induce higher knee 

extensor torque. 

Evoked torque and current efficiency 

We clearly demonstrated that NMES applied at LK60 and SK60 produces greater 

absolute evoked torque and current efficiency compared to LK20 and SK20 (Table 1). Our 

results are in agreement with previous reports that found greater evoked torque at 60º of 

knee flexion compared to more extended positions (15º and 30º) 8,9. Other studies have 

shown that NMES is more fatiguing at 90º of knee flexion than at 15º 34 and at 65º compared 

to 90º or 20º 35, which was explained by greater pre-fatiguing torque in the more flexed 

position of Lee et al. 34 and in the midrange position of Marion et al. 35.  

In addition, we investigated the current efficiency, which is a function of the 

evoked torque and current amplitude 25. To the best of our knowledge, this outcome has 

not previously been evaluated according to hip and knee angles. Current efficiency was 

greater at LK60 and SK60, demonstrating that at these angles NMES allows the generation 

of higher absolute torque with lower current amplitude 25,26. Our protocol required the 

maximal tolerated amplitude with the goal of achieving the maximal tolerated evoked 

torque. However, at a chosen percentage of the MVC, a cautiously chosen joint angle could 

allow the achievement of the targeted torque with lower current amplitude and, by doing 

so, with less sensory discomfort, which is a common limitation of NMES 24. Therefore, it 
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is possible to suggest the application of NMES at 60º of knee flexion unless contraindicated 

by disease or not tolerated.  

Muscle architecture 

Only two studies have assessed the architecture of all QF constituents in vivo, but 

they did not apply NMES or assess different joint angles 22,36. Our main finding was that 

QF (Fig. 3I, J) demonstrated a pattern where positions with the knee at 60º presented a 

lower θp and greater Lf compared to positions with the knee at 20º. Thus, it is suggested 

that LK60 and SK60 placed the QF at a better architectural configuration for torque 

generation, i.e., improved harnessing of muscle force and ideal sarcomere length 1,16. 

Individually, this optimum pattern according to knee angle was found in the VL, VM, and 

largely in the VI, while for the RF, it was more dependent on hip angle (Fig 4 A-H). In 

contrast, LK20 and SK20 presented an increased θp and shorter Lf, which, respectively, 

attenuates the transmission of force to the tendon-aponeurosis complex 36 and reduces force 

production, according to the force–length relationship 2. Interestingly, with some 

exceptions (θp of RF, Lf of VM, and θp of QF; Fig. 3A, F, I), the change from rest to 

contraction did not differ and the percentage change was the same in different positions, 

despite differences in torque and muscle architecture, which limits these findings to explain 

mechanisms for torque production. 

Rectus femoris 

We clearly demonstrated the effect of hip angle on the RF (Fig. 3A, B), as expected 

for the only biarticular constituent of QF. The θp was lower and Lf greater at LK60 than in 

all other positions, since LK60 was the most stretched position assessed here. A lack of 

difference between SK60 and LK20 probably occurred because each position shortened 

the RF in one joint and lengthened it in another, but the similarity between LK20 and SK20 

indicate that, beyond a certain angle within the range of motion, no significant reduction 
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occurs in fiber length, but only a slack in the muscle-tendon unit 12. This is supported by 

Herzog et al. 2, who predicted that, when the hip is flexed, RF force ceases before full knee 

extension is reached. Considering θp at rest, there were no differences between any 

positions, in contrast to the lower θp at LK60 that occurred during contraction, possibly 

because θp changes due to joint rotation may be more pronounced if a muscle is contracting 

37. 

Vastus lateralis, medialis, and intermedius 

The VL and VM, monoarticular constituents of QF, showed the clear effect of knee 

angle, i.e., lower θp and greater Lf when the knee was at 60º compared to 20º (Fig. 3C-F). 

Unexpectedly, the Lf of the VM did not change from rest to contraction at LK60 and LK20. 

Grob et al. 38 reported that VM insertion expands over the entire length of the VI 

aponeurosis and on the medial edge of the biarticular RF. Furthermore, inter- and 

extramuscular connective tissues are a source of interaction between synergistic muscles 

39. This evidence suggests that VM architecture may be influenced by the hip angle. For 

the VI, only LK60, but not SK60, demonstrated lower θp compared to positions with the 

knee at 20º (Fig. 3G). Since the VI is surrounded by the superficial QF muscles (RF, VL, 

and VM), it may be compressed due to space constraints 16, therefore, when the RF is 

stretched at LK60, it compresses the VI, reducing its θp. 

Tendon-aponeurosis complex 

The QF had a lower TACD at LK60 than at SK60 (Fig. 4) despite the same 

absolute evoked torque, indicating that the increased passive tension at LK60 limited the 

tendinous elongation during contraction 14. Increased tension of the tendon-aponeurosis 

complex in stretched conditions allows stronger contractions with less effort due to better 

force transmission from muscle to bone 15. This was demonstrated by Maffiulet et al. 6 and 

Bampouras et al. 7, who found greater knee extensor evoked torque in the lying compared 



31 
 

to the seated position with the knee at 90º. In the present study, we only found a non 

significant increase in evoked torque and current efficiency at LK60 compared to SK60. 

Fukutani et al. 14 found higher triceps sural torque at a longer muscle length compared to a 

neutral position. However, for the QF, a more stretched position at 90º of knee flexion 

decreased voluntary and evoked torque compared to 60º 5,8. These discrepancies in the 

literature indicate a limit between improving force transmission while avoiding a mismatch 

between contractile filaments of muscle fibers 2.  

According to Massey et al. 36, stiffer tendons also cause less muscle shortening at 

the same absolute force. Supporting this concept, we found that the increase in θp of the 

RF was not significant at LK60 (Fig. 3A), and neither was the decrease in Lf of the VM at 

LK60 and LK20, which correspond to the lower TACD at LK60. On the other hand, larger 

fascicle shortening may be necessary to eliminate the slack of the tendon-aponeurosis 

complex in more shortened positions 12, which explains why at LK20 and SK20 the TACD 

of QF was the same as at LK60 despite torque dissimilarities. Suydam et al. 40 showed that 

a lengthened Achilles tendon (after rupture repair) reduces the ability to generate adequate 

triceps surae muscle output, requiring increased muscle shortening for compensation, but 

without efficient load transmission and leading to atrophy. Similarly, it is possible that a 

muscle in a shortened position needs to contract more without proper load, limiting the 

stimulus for strengthening and hypertrophy.  

Some limitations should be addressed in the present study. Our ultrasound had a 

probe width of 40 mm, which limited visualization of the entire muscle fascicles. However, 

this limitation is commonly demonstrated and there are reliable methods to overcome this 

issue, such as equations for Lf stimations 33. Despite this limitation, we showed moderate 

and high ICCs for our outcomes. Another limitation is related to the nature of the NMES-

induced contractions assessed by ultrasound whose visualization is challenging due to 
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muscle deformation and reduced control of contraction velocity. Finally, our results are 

limited to our population and a single session of NMES.  

PERSPECTIVES 

The present study provides novel application of sports medicine basis for the 

optimal adjustment of hip and knee angles during NMES. Importantly, once the knee angle 

dictates the knee extensor torque, it should be maintained at the ideal angle of 60º, 

regardless of the hip angle, unless contraindicated by joint disease, musculoskeletal injury 

or discomfort. Therefore, physical therapists and athletic trainers may use the seated or 

lying position according to the clinical setting. Further studies are necessary to elucidate 

how the knee and hip angles influence the short and long-term adaptations of muscle 

architecture and tendon-aponeurosis complex following NMES training programs. 

CONCLUSIONS 

NMES generate greater torque at 60º of knee flexion, compared to 20º, regardless 

of the hip angle. Each quadriceps constituent demonstrated unique behavior according to 

hip and or knee angle, but a greater Lf and lower θp were predominant for positions with 

greater torque (SK60 and LK60). A more elongated position stiffens the tendon-

aponeurosis complex, as demonstrated by a lower TACD at LK60 compared to (SK60), 

which probably contributed to optimized transmission of force and slightly higher torque 

for LK60. Clinicians should preferably use NMES at SK60 or LK60 for strengthening 

purposes.  
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